Neural Fuzzy Forecasting of the China Yuan to US Dollar Exchange Rate - A Swarm Intelligence Approach
نویسندگان
چکیده
Exchange rate fluctuation has a significant effect on the risk of marketing business, economic development and financial stability. Accurate prediction for exchange rate may reduce commercial and economic risk arisen by exchange rate fluctuation. In this study, we propose an intelligent approach to the forecasting problem of the CNY-USD exchange rate, where a neurofuzzy self-organizing system is used as the intelligent predictor. For learning purpose, a novel hybrid learning method is devised for the intelligent predictor, where the well-known particle swarm optimization (PSO) algorithm and the recursive least squares estimator (RLSE) algorithm are involved. The proposed learning method is called the PSO-RLSE-PSO method. Experiments for time series forecasting of the CNY-USD exchange rate are conducted. For performance, the intelligent predictor is trained by several different methods. The experimental results show that the proposed approach has excellent forecasting performance.
منابع مشابه
A hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملImproved Weight Fuzzy Time Series as used in the Exchange rates Forecasting of US Dollar to Ringgit Malaysia
Foreign exchange rate (forex) forecasting has been the subject of several rigorous investigations due to its importance in evaluating the bene ̄ts and risks of the international business environments. Many methods have been researched with the ultimate goal being to increase the reliability and e±ciency of the forecasting method. However as the data are inherently dynamic and complex, the develo...
متن کاملپیشبینی بازار ارز فارکس با استفاده از سریهای زمانی فازی و الگوریتم شبیه سازی تبرید
In the last 15 years, some methods have been proposed for forecasting based on fuzzy time series. One of the most important issues that affect the forecasting results in these models is the length of intervals. There are some studies on this issue but in most of them, length of intervals are predefined or even in some studies the interval’s length are the same. In this study we propose a model ...
متن کاملForeign Exchange Rate Prediction using Computational Intelligence Methods
This paper presents the application of six nonlinear ensemble architectures to forecasting the foreign exchange rates in the computational intelligence paradigm. Intelligent techniques such as Backpropagation neural network (BPNN), Wavelet neural network (WNN), Multivariate adaptive regression splines (MARS), Support vector regression (SVR), Dynamic evolving neuro-fuzzy inference system (DENFIS...
متن کاملPerformance of Exchange Rate Forecast Using Distance-Based Fuzzy Time Series
Fuzzy time series model has been employed by many researchers in forecasting activities such as students’ enrolment, temperature fluctuations and stock prices. The existing fuzzy time series models require exact match of the fuzzy logic relationships to calculate the forecasted value. However, in real life applications, the exact match of fuzzy logic relationships is not possible. Thus, an impr...
متن کامل